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1 L2-Based Interior and Boundary Regularity

1.1 Hk elliptic interior regularity

Last time, we were studying L2-based regularity theory. We were considered with the
second order, scalar partial differential operator

Pu = −∂j(aj,k∂ku) + bj∂ju+ cu,

where aj,k(x) � λI for all x ∈ U for some λ > 0.

Theorem 1.1 (H2 interior regularity). Let U be an open subset of Rd, and suppose |Da|+
|a|+ |b|+ |c| ≤ Λ for all x ∈ U . Let u ∈ H1(U) be a weak solution to Pu = f in U , where
f ∈ L2(U). Then for all V ⊆⊆ U (V bounded with V ⊆ U), u ∈ H2(V ), and

‖u‖H2(V ) ≤ C(‖f‖L2(U) + ‖u‖L2(U)).

Remark 1.1. The constant C is independent of u and f but dependent on λ,Λ, V, U .

The basic ideas in the proof were:

1. Integration by parts and ellipticity give us control over the highest order term.

2. Commute the equation with ∂j .

In the proof, we looked at the equation for ∂ju, then applied ellipticity to control
‖ζD∂ju‖L2 , where ζ was a smooth curoff which equals 1 on B but is 0 near ∂U . In
reality, however, to deduce that u ∈ H2(V ), we have to work with the difference quotient

Dj(u) =
u(x+hej)−u(x)

h .
Here is the higher regularity version of this theorem.

Theorem 1.2 (Hk elliptic interior regularity). Assume the same hypotheses as before,
except
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• |Dαa| ≤ A for all |α| ≤ k − 1, |Dαb|+ |Dαc| ≤ A for all |α| ≤ k − 2,

• f ∈ Hk−2(U).

Then for all V ⊆⊆ U , u ∈ Hk(V ), and

‖u‖Hk(V ) ≤ C(‖f‖Hk−2(U) + ‖u‖L2(U)).

Proof. Here is a sketch. The proof follows the same idea, except we commute Dβ for
|β| ≤ k − 1. Then look at the equation for Dβu:

Dβf = Dβ(Pu)

= Dβ(−∂j(aj,k∂ku) + bj∂ju+ cu)

= −∂j(aj,k∂kDβu) +Dβ(bj∂ju) +Dβ(cu).

Multiply both sides by ζ2Dβu. The first term on the right is

−
∑

γ≤β,γ 6=β
∂j(D

β−γaj,k∂kD
γu)cγ .

This gives us control of ‖DDβuζ‖L2(U). For the rest of the terms, you do not see more
than k − 1 derivatives of of u and k − 2 derivatives of b and c after integration by parts.

In reality, the details need to be carried out with difference quotients, using induction
to take care of lower derivative terms. The full proof is in Evans’ book.

1.2 L2-based boundary regularity

Previously, we have been looking at regularity away from the boundary. You may also
notice that we have not been putting conditions on boundary behavior of u (we only
required, for example, u ∈ H1 rather than u ∈ H1

0 ).

Theorem 1.3. Assume the same hypotheses as in the H2 interior regularity theorem,
except:

• u ∈ H1
0 (U) (i.e. u|∂U = 0 in the sense of traces).

• ∂U is C2.

Then u ∈ H2(U), and
‖u‖H2(U) ≤ C(‖f‖L2(U) + ‖u‖L2(U)).

Proof. Assume for simplicity that u ∈ H2(U); we can take care of this by doing the
argument with difference quotients instead of derivatives. We will omit the contribution
of b and c because they do not contribute much, as we have seen. Start with the equation

f = ∂j(a
j,k∂ku) + · · · .
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We want to take a derivative to say

∂`f = −∂`(∂j(aj,k∂ku)),

but we cannot necessarily take the derivative at the boundary. However, notice that if the
boundary is flat (wlog {xd = 0}), then all ∂` exist for ` = 1, . . . , d−1. The only problem is
the normal derivative ∂xd = −ν. In other words only (d − 1)-many directions (tangential
to ∂U) are admissible.

For the sake of simplicity, take the special case when U = B1(0) ∩ Rd+ and suppu ⊆
B1/2(0) ∩ Rd+.

In this case, `f = −∂j(aj,k∂k∂`u)−∂j(∂`aj,k∂ku) for ` = 1, . . . , d−1. For these d−1 terms,
we can use the cutoff ζ which equals 1 on B1/2(0) and is 0 near ∂B1(0) to get

‖ζD∂`u‖L2 ≤ C(‖ζf‖L2 + ‖u‖L2).

In the integration by parts, there is an additional boundary term from B1/2(0)∩{xd = 0}.
However, this contribution is zero because u|∂U = 0, which also implies ∂`u|∂U = 0 for
` = 1, . . . , d− 1.

In this special case, it now remains to control ‖ζ∂xd∂xdu‖L2 . The key observation is
that the equation allows us to express DνDνu in terms of everything else. Recall that the
original equation is

f = −∂j(aj,k∂ku) + · · · .

The condition that a � λI is equivalent to aj,kξjξk ≥ λ|ξ|2 for all ξ ∈ Rd. If we take ξ = ed,
this tells us that ad,d ≥ λ. Now write the equation as

f = −∂d(ad,d∂du)︸ ︷︷ ︸
=ad,d∂2du−(∂dad,d)∂du

−
∑
j,k
j,k 6=d

∂j(a
j,k∂ku).

We can divide the equation by ad,d to get

∂2du =
1

−ad,d
(a ·Dtanu+ (∂a), b)Du+ cu+ f.

This lets us control ∂2du by the other derivatives, completing the proof in this special case.
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In general, we reduce to this special case by first using a smooth partition of unity and
boundary straightening. In particular, for every x ∈ ∂U , there exists a ball Br(x) such
that, after relabeling of the coordinate axes, U ∩Br(x) = {xd > γ(x1, . . . , xd−1)} for some
C2 function γ. We then take a boundary straightening map y, defined by{

y` = x` ` = 1, . . . , d− 1

yd = xd − γ(x1, . . . , xd).

By compactness, U ⊆ (
⋃K
k=1 Uk) ∪ U0, where Uk are balls covering the boundary and U0

contains the rest of the interior. Then there exists a smooth partition of unity {χk}Kk=0

subordinate to this cover, which gives

u = χ0u+
K∑
k=1

χku.

The first term is supported on the interior of U , so we can apply our interior regularity
theorem to it. For each other χku, when we change x 7→ y = y(x), we are reduced to
the half-ball case already covered (both in terms of geometry and support of u). Check
that the ellipticity constant of the resulting equation is still ' λ and that ∂ã(y) , b̃(y)
obey same bounds as before; this comes from writing the equation in terms of derivatives
in y and checking that the change of variables formula aj,k = ∂xj

∂yj′
ãj
′,k′ ∂xk

∂yk′
preserves the

a � λI condition. From the H2 bound for uχk(y), come back to uχk(x) (which needs the
C2 condition on ∂U).

1.3 High level comparison of L2-based regularity theory and Schauder
theory

L2-based regularity theory, which deals with weak solutions in H1, is useful for deriving
the existence of the solution. In order to derive the H1 bound, we only need a ∈ L∞,
rather than requiring additional regularity. Think of

−∂j(aj,k(u)∂ku) = f,

where the coefficients aj,k may be very rough. However, it is wasteful in terms of the
regularity required of a for higher regularity of the solution u.

To rectify this, we want another regularity theory that works well in this respect for
nonlinear equations. This is achieved by Schauder theory, elliptic regularity theory in Ck,α.
Hölder spaces are naturally algebras; they play well with products, which are generally the
problem with nonlinear PDEs. The gap between L2-based regularity theory and Schauder
theory is given by the famous de Giorgi-Nash-Moser estimates, which we will hopefully
discuss later in the course.
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